# The `Guide_four_side_10_shells` Component

This component models a guide with four side walls surounded by up to 10 shells (every shell consists of additional four walls). In the end it forms a guide with an inner and up to 10 outer channel. As user you can controll the properties of every wall separatly. All togther you have up to 88 walls: From the inner channel 4 inner walls and four outer walls and from every outer channel 4 inner and 4 outer walls. Every single wall can have a elliptic, parabolic or straight shape. All four sides of the guide are independent from each other. In the elliptic case the side wall shape follows the equation x^2/b^2+(z+z0)^2/a^2=1 (the center of the ellipse is located at (0,-z0)). In the parabolic case the side wall shape follows the equation z=b-ax^2;mc In the straight case the side wall shape follows the equation z=l/(w2-w1)*x-w1. The shape selection is done by the focal points. The focal points are located at the z-axis and are defined by their distance to the entrance or exit window of the guide (in the following called 'focal length'). If both focal lengths for one wall are zero it will be a straight wall (entrance and exit width have to be given in the beginning). If one of the focal lengths is not zero the shape will be parabolic (only the entrance width given in the beginning is recognized; exit width will be calculated). If the the entrance focal length is zero the guide will be a focusing devise. If the exit focal length is zero it will be defocusing devise. If both focals are non zero the shape of the wall will be elliptic (only the entrance width given in the beginning is recognized; exit width will be calculated). Notice: 1.)The focal points are in general located outside the guide (positive focal lengths). Focal points inside the guide need to have negative focal lengths. 2.)The exit width parameters (w2r, w2l, h2u,h2d) are only taken into account if the walls have a linear shape. In the ellitic or parabolic case they will be ignored. For the inner channel: the outer side of each wall is calculated by the component in depentence of the wallthickness and the shape of the inner side. Each of the 88 walls can have a own indepenting reflecting layer (defined by an input file) or it can be a absorber or it can be transparent. The reflectivity properties can be given by an input file (Format [q(Angs-1) R(0-1)]) or by parameters (Qc, alpha, m, W). %BUGS This component does not work with gravitation on. This component does not work correctly in GROUP-modus.

## Identification

• Author: Tobias Panzner
• Origin: PSI
• Date: 07/08/2010
• Version: 1.1

## Input parameters

Parameters in boldface are required; the others are optional.
Name Unit Description Default
RIreflect DEFAULT : no file @: (str) Name of relfectivity file for the right inner wall. Format [q(Angs-1) R(0-1)] 0
LIreflect DEFAULT : no file @: (str) Name of relfectivity file for the left inner wall. Format [q(Angs-1) R(0-1)] 0
UIreflect DEFAULT : no file @: (str) Name of relfectivity file for the top inner wall. Format [q(Angs-1) R(0-1)] 0
DIreflect DEFAULT : no file @: (str) Name of relfectivity file for the bottom inner wall. Format [q(Angs-1) R(0-1)] 0
ROreflect DEFAULT : no file @: (str) Name of relfectivity file for the right outer wall. Format [q(Angs-1) R(0-1)] 0
LOreflect DEFAULT : no file @: (str) Name of relfectivity file for the left outer wall. Format [q(Angs-1) R(0-1)] 0
UOreflect DEFAULT : no file @: (str) Name of relfectivity file for the top outer wall. Format [q(Angs-1) R(0-1)] 0
DOreflect DEFAULT : no file @: (str) Name of relfectivity file for the bottom outer wall. Format [q(Angs-1) R(0-1)] 0
RIreflect1 0
LIreflect1 0
UIreflect1 0
DIreflect1 0
ROreflect1 0
LOreflect1 0
UOreflect1 0
DOreflect1 0
RIreflect2 0
LIreflect2 0
UIreflect2 0
DIreflect2 0
ROreflect2 0
LOreflect2 0
UOreflect2 0
DOreflect2 0
RIreflect3 0
LIreflect3 0
UIreflect3 0
DIreflect3 0
ROreflect3 0
LOreflect3 0
UOreflect3 0
DOreflect3 0
RIreflect4 0
LIreflect4 0
UIreflect4 0
DIreflect4 0
ROreflect4 0
LOreflect4 0
UOreflect4 0
DOreflect4 0
RIreflect5 0
LIreflect5 0
UIreflect5 0
DIreflect5 0
ROreflect5 0
LOreflect5 0
UOreflect5 0
DOreflect5 0
RIreflect6 0
LIreflect6 0
UIreflect6 0
DIreflect6 0
ROreflect6 0
LOreflect6 0
UOreflect6 0
DOreflect6 0
RIreflect7 0
LIreflect7 0
UIreflect7 0
DIreflect7 0
ROreflect7 0
LOreflect7 0
UOreflect7 0
DOreflect7 0
RIreflect8 0
LIreflect8 0
UIreflect8 0
DIreflect8 0
ROreflect8 0
LOreflect8 0
UOreflect8 0
DOreflect8 0
RIreflect9 0
LIreflect9 0
UIreflect9 0
DIreflect9 0
ROreflect9 0
LOreflect9 0
UOreflect9 0
DOreflect9 0
RIreflect10 0
LIreflect10 0
UIreflect10 0
DIreflect10 0
ROreflect10 0
LOreflect10 0
UOreflect10 0
DOreflect10 0
w1l DEFAULT = 2.000 + @*0.002 @: [m] Width at the left guide entry (positive x-axis) 0.002
w2l DEFAULT = 2.000 + @*0.002 @: [m] Width at the left guide exit (positive x-axis) 0.002
linwl DEFAULT = 0 @ [m] left horizontal wall: distance of 1st focal point and guide entry 0
loutwl DEFAULT = 0 @ [m] left horizontal wall: distance of 2nd focal point and guide exit 0
w1r DEFAULT = 2.000 + @*0.002 @: [m] Width at the right guide entry (negative x-axis) 0.002
w2r DEFAULT = 2.000 + @*0.002 @: [m] Width at the right guide exit (negative x-axis) 0.002
linwr DEFAULT = 0 @ [m] right horizontal wall: distance of 1st focal point and guide entry 0.0
loutwr DEFAULT = 0 @ [m] right horizontal wall: distance of 2nd focal point and guide exit 0
h1u DEFAULT = 2.000 + @*0.002 @: [m] Height at the top guide entry (positive y-axis) 0.002
h2u DEFAULT = 2.000 + @*0.002 @: [m] Height at the top guide entry (positive y-axis) 0.002
linhu DEFAULT = 0 @ [m] upper vertical wall: distance of 1st focal point and guide entry 0.0
louthu DEFAULT = 0 @ [m] upper vertical wall: distance of 2nd focal point and guide exit 0
h1d DEFAULT = 2.000 + @*0.002 @: [m] Height at the bottom guide entry (negative y-axis) 0.002
h2d DEFAULT = 2.000 + @*0.002 @: [m] Height at the bottom guide entry (negative y-axis) 0.002
linhd DEFAULT = 0 @ [m] lower vertical wall: distance of 1st focal point and guide entry 0.0
louthd DEFAULT = 0 @ [m] lower vertical wall: distance of 2nd focal point and guide exit 0
l DEFAULT = 0 [m] length of guide 0
R0 DEFAULT = 0.99 [1] Low-angle reflectivity 0.99
Qcxl DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for left vertical inner wall 0.0217
Qcxr DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for right vertical inner wall 0.0217
Qcyu DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for top inner wall 0.0217
Qcyd DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for bottom inner wall 0.0217
alphaxl DEFAULT = 6.07 @: [AA] Slope of reflectivity for left vertical inner wall 6.07
alphaxr DEFAULT = 6.07 @: [AA] Slope of reflectivity for right vertical inner wall 6.07
alphayu DEFAULT = 6.07 @: [AA] Slope of reflectivity for top inner wall 6.07
alphayd DEFAULT = 6.07 @: [AA] Slope of reflectivity for bottom inner wall 6.07
Wxr DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for right inner wall 0.003
Wxl DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for left inner wall 0.003
Wyu DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for top inner wall 0.003
Wyd DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for bottom inner wall 0.003
mxr DEFAULT = -1 @: [1] m-value of material for right vertical inner wall. 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
mxl DEFAULT = -1 @: [1] m-value of material for left vertical inner wall. 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
myu DEFAULT = -1 @: [1] m-value of material for top inner wall 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
myd DEFAULT = -1 @: [1] m-value of material for bottom inner wall 0 means the wall is absorbing. -1 means the wall is transparent. 3.6
QcxrOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for right vertical outer wall 0.0217
QcxlOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for left vertical outer wall 0.0217
QcyuOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for top outer wall 0.0217
QcydOW DEFAULT = 0.0217 @: [AA-1] Critical scattering vector for bottom outer wall 0.0217
alphaxlOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for left vertical outer wall 6.07
alphaxrOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for right vertical outer wall 6.07
alphayuOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for top outer wall 6.07
alphaydOW DEFAULT = 6.07 @: [AA] Slope of reflectivity for bottom outer wall 6.07
WxrOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for right outer wall 0.003
WxlOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for left outer wall 0.003
WyuOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for top outer wall 0.003
WydOW DEFAULT = 0.003 @: [AA-1] Width of supermirror cut-off for bottom outer wall 0.003
mxrOW DEFAULT = -1 @: [1] m-value of material for right vertical outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
mxlOW DEFAULT = -1 @: [1] m-value of material for left vertical outer wall 0 means the wall is absorbing.(DEFAULT) -1 means the wall is transparent. 0
myuOW DEFAULT = -1 @: [1] m-value of material for top outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
mydOW DEFAULT = -1 @: [1] m-value of material for bottom outer wall 0 means the wall is absorbing. (DEFAULT) -1 means the wall is transparent. 0
rwallthick DEFAULT = 0.001 m [m] thickness of the right wall 0.001
lwallthick DEFAULT = 0.001 m [m] thickness of the left wall 0.001
uwallthick DEFAULT = 0.001 m [m] thickness of the top wall 0.001
dwallthick DEFAULT = 0.001 m [m] thickness of the bottom wall 0.001
w1l1 2.002
w2l1 2.002
linwl1 0
loutwl1 0
w1r1 2.002
w2r1 2.002
linwr1 0
loutwr1 0
h1u1 2.002
h2u1 2.002
linhu1 0
louthu1 0
h1d1 2.002
h2d1 2.002
linhd1 0
louthd1 0
Qcxl1 0.0217
Qcxr1 0.0217
Qcyu1 0.0217
Qcyd1 0.0217
alphaxl1 6.07
alphaxr1 6.07
alphayu1 6.07
alphayd1 6.07
Wxr1 0.003
Wxl1 0.003
Wyu1 0.003
Wyd1 0.003
mxr1 -1
mxl1 -1
myu1 -1
myd1 -1
QcxrOW1 0.0217
QcxlOW1 0.0217
QcyuOW1 0.0217
QcydOW1 0.0217
alphaxlOW1 6.07
alphaxrOW1 6.07
alphayuOW1 6.07
alphaydOW1 6.07
WxrOW1 0.003
WxlOW1 0.003
WyuOW1 0.003
WydOW1 0.003
mxrOW1 -1
mxlOW1 -1
myuOW1 -1
mydOW1 -1
rwallthick1 0.001
lwallthick1 0.001
uwallthick1 0.001
dwallthick1 0.001
w1l2 2.004
w2l2 2.004
linwl2 0
loutwl2 0
w1r2 2.004
w2r2 2.004
linwr2 0
loutwr2 0
h1u2 2.004
h2u2 2.004
linhu2 0
louthu2 0
h1d2 2.004
h2d2 2.004
linhd2 0
louthd2 0
Qcxl2 0.0217
Qcxr2 0.0217
Qcyu2 0.0217
Qcyd2 0.0217
alphaxl2 6.07
alphaxr2 6.07
alphayu2 6.07
alphayd2 6.07
Wxr2 0.003
Wxl2 0.003
Wyu2 0.003
Wyd2 0.003
mxr2 -1
mxl2 -1
myu2 -1
myd2 -1
QcxrOW2 0.0217
QcxlOW2 0.0217
QcyuOW2 0.0217
QcydOW2 0.0217
alphaxlOW2 6.07
alphaxrOW2 6.07
alphayuOW2 6.07
alphaydOW2 6.07
WxrOW2 0.003
WxlOW2 0.003
WyuOW2 0.003
WydOW2 0.003
mxrOW2 -1
mxlOW2 -1
myuOW2 -1
mydOW2 -1
rwallthick2 0.001
lwallthick2 0.001
uwallthick2 0.001
dwallthick2 0.001
w1l3 2.006
w2l3 2.006
linwl3 0
loutwl3 0
w1r3 2.006
w2r3 2.006
linwr3 0
loutwr3 0
h1u3 2.006
h2u3 2.006
linhu3 0
louthu3 0
h1d3 2.006
h2d3 2.006
linhd3 0
louthd3 0
Qcxl3 0.0217
Qcxr3 0.0217
Qcyu3 0.0217
Qcyd3 0.0217
alphaxl3 6.07
alphaxr3 6.07
alphayu3 6.07
alphayd3 6.07
Wxr3 0.003
Wxl3 0.003
Wyu3 0.003
Wyd3 0.003
mxr3 -1
mxl3 -1
myu3 -1
myd3 -1
QcxrOW3 0.0217
QcxlOW3 0.0217
QcyuOW3 0.0217
QcydOW3 0.0217
alphaxlOW3 6.07
alphaxrOW3 6.07
alphayuOW3 6.07
alphaydOW3 6.07
WxrOW3 0.003
WxlOW3 0.003
WyuOW3 0.003
WydOW3 0.003
mxrOW3 -1
mxlOW3 -1
myuOW3 -1
mydOW3 -1
rwallthick3 0.001
lwallthick3 0.001
uwallthick3 0.001
dwallthick3 0.001
w1l4 2.008
w2l4 2.008
linwl4 0
loutwl4 0
w1r4 2.008
w2r4 2.008
linwr4 0
loutwr4 0
h1u4 2.008
h2u4 2.008
linhu4 0
louthu4 0
h1d4 2.008
h2d4 2.008
linhd4 0
louthd4 0
Qcxl4 0.0217
Qcxr4 0.0217
Qcyu4 0.0217
Qcyd4 0.0217
alphaxl4 6.07
alphaxr4 6.07
alphayu4 6.07
alphayd4 6.07
Wxr4 0.003
Wxl4 0.003
Wyu4 0.003
Wyd4 0.003
mxr4 -1
mxl4 -1
myu4 -1
myd4 -1
QcxrOW4 0.0217
QcxlOW4 0.0217
QcyuOW4 0.0217
QcydOW4 0.0217
alphaxlOW4 6.07
alphaxrOW4 6.07
alphayuOW4 6.07
alphaydOW4 6.07
WxrOW4 0.003
WxlOW4 0.003
WyuOW4 0.003
WydOW4 0.003
mxrOW4 -1
mxlOW4 -1
myuOW4 -1
mydOW4 -1
rwallthick4 0.001
lwallthick4 0.001
uwallthick4 0.001
dwallthick4 0.001
w1l5 2.01
w2l5 2.01
linwl5 0
loutwl5 0
w1r5 2.01
w2r5 2.01
linwr5 0
loutwr5 0
h1u5 2.01
h2u5 2.01
linhu5 0
louthu5 0
h1d5 2.01
h2d5 2.01
linhd5 0
louthd5 0
Qcxl5 0.0217
Qcxr5 0.0217
Qcyu5 0.0217
Qcyd5 0.0217
alphaxl5 6.07
alphaxr5 6.07
alphayu5 6.07
alphayd5 6.07
Wxr5 0.003
Wxl5 0.003
Wyu5 0.003
Wyd5 0.003
mxr5 -1
mxl5 -1
myu5 -1
myd5 -1
QcxrOW5 0.0217
QcxlOW5 0.0217
QcyuOW5 0.0217
QcydOW5 0.0217
alphaxlOW5 6.07
alphaxrOW5 6.07
alphayuOW5 6.07
alphaydOW5 6.07
WxrOW5 0.003
WxlOW5 0.003
WyuOW5 0.003
WydOW5 0.003
mxrOW5 -1
mxlOW5 -1
myuOW5 -1
mydOW5 -1
rwallthick5 0.001
lwallthick5 0.001
uwallthick5 0.001
dwallthick5 0.001
w1l6 2.012
w2l6 2.012
linwl6 0
loutwl6 0
w1r6 2.012
w2r6 2.012
linwr6 0
loutwr6 0
h1u6 2.012
h2u6 2.012
linhu6 0
louthu6 0
h1d6 2.012
h2d6 2.012
linhd6 0
louthd6 0
Qcxl6 0.0217
Qcxr6 0.0217
Qcyu6 0.0217
Qcyd6 0.0217
alphaxl6 6.07
alphaxr6 6.07
alphayu6 6.07
alphayd6 6.07
Wxr6 0.003
Wxl6 0.003
Wyu6 0.003
Wyd6 0.003
mxr6 -1
mxl6 -1
myu6 -1
myd6 -1
QcxrOW6 0.0217
QcxlOW6 0.0217
QcyuOW6 0.0217
QcydOW6 0.0217
alphaxlOW6 6.07
alphaxrOW6 6.07
alphayuOW6 6.07
alphaydOW6 6.07
WxrOW6 0.003
WxlOW6 0.003
WyuOW6 0.003
WydOW6 0.003
mxrOW6 -1
mxlOW6 -1
myuOW6 -1
mydOW6 -1
rwallthick6 0.001
lwallthick6 0.001
uwallthick6 0.001
dwallthick6 0.001
w1l7 2.014
w2l7 2.014
linwl7 0
loutwl7 0
w1r7 2.014
w2r7 2.014
linwr7 0
loutwr7 0
h1u7 2.014
h2u7 2.014
linhu7 0
louthu7 0
h1d7 2.014
h2d7 2.014
linhd7 0
louthd7 0
Qcxl7 0.0217
Qcxr7 0.0217
Qcyu7 0.0217
Qcyd7 0.0217
alphaxl7 6.07
alphaxr7 6.07
alphayu7 6.07
alphayd7 6.07
Wxr7 0.003
Wxl7 0.003
Wyu7 0.003
Wyd7 0.003
mxr7 -1
mxl7 -1
myu7 -1
myd7 -1
QcxrOW7 0.0217
QcxlOW7 0.0217
QcyuOW7 0.0217
QcydOW7 0.0217
alphaxlOW7 6.07
alphaxrOW7 6.07
alphayuOW7 6.07
alphaydOW7 6.07
WxrOW7 0.003
WxlOW7 0.003
WyuOW7 0.003
WydOW7 0.003
mxrOW7 -1
mxlOW7 -1
myuOW7 -1
mydOW7 -1
rwallthick7 0.001
lwallthick7 0.001
uwallthick7 0.001
dwallthick7 0.001
w1l8 2.016
w2l8 2.016
linwl8 0
loutwl8 0
w1r8 2.016
w2r8 2.016
linwr8 0
loutwr8 0
h1u8 2.016
h2u8 2.016
linhu8 0
louthu8 0
h1d8 2.016
h2d8 2.016
linhd8 0
louthd8 0
Qcxl8 0.0217
Qcxr8 0.0217
Qcyu8 0.0217
Qcyd8 0.0217
alphaxl8 6.07
alphaxr8 6.07
alphayu8 6.07
alphayd8 6.07
Wxr8 0.003
Wxl8 0.003
Wyu8 0.003
Wyd8 0.003
mxr8 -1
mxl8 -1
myu8 -1
myd8 -1
QcxrOW8 0.0217
QcxlOW8 0.0217
QcyuOW8 0.0217
QcydOW8 0.0217
alphaxlOW8 6.07
alphaxrOW8 6.07
alphayuOW8 6.07
alphaydOW8 6.07
WxrOW8 0.003
WxlOW8 0.003
WyuOW8 0.003
WydOW8 0.003
mxrOW8 -1
mxlOW8 -1
myuOW8 -1
mydOW8 -1
rwallthick8 0.001
lwallthick8 0.001
uwallthick8 0.001
dwallthick8 0.001
w1l9 2.018
w2l9 2.018
linwl9 0
loutwl9 0
w1r9 2.018
w2r9 2.018
linwr9 0
loutwr9 0
h1u9 2.018
h2u9 2.018
linhu9 0
louthu9 0
h1d9 2.018
h2d9 2.018
linhd9 0
louthd9 0
Qcxl9 0.0217
Qcxr9 0.0217
Qcyu9 0.0217
Qcyd9 0.0217
alphaxl9 6.07
alphaxr9 6.07
alphayu9 6.07
alphayd9 6.07
Wxr9 0.003
Wxl9 0.003
Wyu9 0.003
Wyd9 0.003
mxr9 -1
mxl9 -1
myu9 -1
myd9 -1
QcxrOW9 0.0217
QcxlOW9 0.0217
QcyuOW9 0.0217
QcydOW9 0.0217
alphaxlOW9 6.07
alphaxrOW9 6.07
alphayuOW9 6.07
alphaydOW9 6.07
WxrOW9 0.003
WxlOW9 0.003
WyuOW9 0.003
WydOW9 0.003
mxrOW9 -1
mxlOW9 -1
myuOW9 -1
mydOW9 -1
rwallthick9 0.001
lwallthick9 0.001
uwallthick9 0.001
dwallthick9 0.001
w1l10 2.02
w2l10 2.02
linwl10 0
loutwl10 0
w1r10 2.02
w2r10 2.02
linwr10 0
loutwr10 0
h1u10 2.02
h2u10 2.02
linhu10 0
louthu10 0
h1d10 2.02
h2d10 2.02
linhd10 0
louthd10 0
Qcxl10 0.0217
Qcxr10 0.0217
Qcyu10 0.0217
Qcyd10 0.0217
alphaxl10 6.07
alphaxr10 6.07
alphayu10 6.07
alphayd10 6.07
Wxr10 0.003
Wxl10 0.003
Wyu10 0.003
Wyd10 0.003
mxr10 -1
mxl10 -1
myu10 -1
myd10 -1
QcxrOW10 0.0217
QcxlOW10 0.0217
QcyuOW10 0.0217
QcydOW10 0.0217
alphaxlOW10 6.07
alphaxrOW10 6.07
alphayuOW10 6.07
alphaydOW10 6.07
WxrOW10 0.003
WxlOW10 0.003
WyuOW10 0.003
WydOW10 0.003
mxrOW10 -1
mxlOW10 -1
myuOW10 -1
mydOW10 -1
rwallthick10 0.001
lwallthick10 0.001
uwallthick10 0.001
dwallthick10 0.001

## Output parameters

Name Unit Description Default
w1rwt
w1lwt
h1uwt
h1dwt
w2rwt
w2lwt
h2uwt
h2dwt
pawr
pawl
pbwr
pbwl
pahu
pahd
pbhu
pbhd
awl
bwl
awr
bwr
ahu
bhu
ahd
bhd
awlwt
bwlwt
awrwt
bwrwt
ahuwt
bhuwt
ahdwt
bhdwt
pawrwt
pawlwt
pbwrwt
pbwlwt
pahuwt
pahdwt
pbhuwt
pbhdwt
t1
t2w1r
t2w1l
t2h1u
t2h1d
t2w1rwt
t2w1lwt
t2h1uwt
t2h1dwt
a2wlwt
b2wlwt
a2wrwt
b2wrwt
a2huwt
b2huwt
a2hdwt
b2hdwt
a2wl
b2wl
a2wr
b2wr
a2hu
b2hu
a2hd
b2hd
mru1
mru2
nru1
nru2
mrd1
mrd2
nrd1
nrd2
mlu1
mlu2
nlu1
nlu2
mld1
mld2
nld1
nld2
z0wr
z0wl
z0hu
z0hd
p2parawr
p2parawl
p2parahu
p2parahd
p2parawrwt
p2parawlwt
p2parahuwt
p2parahdwt
m
n
nz
nx
ny
n2
pf
vxin
vyin
vzin
q
xtest
ytest
riTable
liTable
uiTable
diTable
roTable
loTable
uoTable
doTable
w1rwt1
w1lwt1
h1uwt1
h1dwt1
w2rwt1
w2lwt1
h2uwt1
h2dwt1
pawr1
pawl1
pbwr1
pbwl1
pahu1
pahd1
pbhu1
pbhd1
awl1
bwl1
awr1
bwr1
ahu1
bhu1
ahd1
bhd1
awlwt1
bwlwt1
awrwt1
bwrwt1
ahuwt1
bhuwt1
ahdwt1
bhdwt1
pawrwt1
pawlwt1
pbwrwt1
pbwlwt1
pahuwt1
pahdwt1
pbhuwt1
pbhdwt1
t2w1r1
t2w1l1
t2h1u1
t2h1d1
t2w1rwt1
t2w1lwt1
t2h1uwt1
t2h1dwt1
a2wlwt1
b2wlwt1
a2wrwt1
b2wrwt1
a2huwt1
b2huwt1
a2hdwt1
b2hdwt1
a2wl1
b2wl1
a2wr1
b2wr1
a2hu1
b2hu1
a2hd1
b2hd1
mru11
mru21
nru11
nru21
mrd11
mrd21
nrd11
nrd21
mlu11
mlu21
nlu11
nlu21
mld11
mld21
nld11
nld21
z0wr1
z0wl1
z0hu1
z0hd1
p2parawr1
p2parawl1
p2parahu1
p2parahd1
p2parawrwt1
p2parawlwt1
p2parahuwt1
p2parahdwt1
riTable1
liTable1
uiTable1
diTable1
roTable1
loTable1
uoTable1
doTable1
w1rwt2
w1lwt2
h1uwt2
h1dwt2
w2rwt2
w2lwt2
h2uwt2
h2dwt2
pawr2
pawl2
pbwr2
pbwl2
pahu2
pahd2
pbhu2
pbhd2
awl2
bwl2
awr2
bwr2
ahu2
bhu2
ahd2
bhd2
awlwt2
bwlwt2
awrwt2
bwrwt2
ahuwt2
bhuwt2
ahdwt2
bhdwt2
pawrwt2
pawlwt2
pbwrwt2
pbwlwt2
pahuwt2
pahdwt2
pbhuwt2
pbhdwt2
t2w1r2
t2w1l2
t2h1u2
t2h1d2
t2w1rwt2
t2w1lwt2
t2h1uwt2
t2h1dwt2
a2wlwt2
b2wlwt2
a2wrwt2
b2wrwt2
a2huwt2
b2huwt2
a2hdwt2
b2hdwt2
a2wl2
b2wl2
a2wr2
b2wr2
a2hu2
b2hu2
a2hd2
b2hd2
mru12
mru22
nru12
nru22
mrd12
mrd22
nrd12
nrd22
mlu12
mlu22
nlu12
nlu22
mld12
mld22
nld12
nld22
z0wr2
z0wl2
z0hu2
z0hd2
p2parawr2
p2parawl2
p2parahu2
p2parahd2
p2parawrwt2
p2parawlwt2
p2parahuwt2
p2parahdwt2
riTable2
liTable2
uiTable2
diTable2
roTable2
loTable2
uoTable2
doTable2
t2w1r3
t2w1l3
t2h1u3
t2h1d3
t2w1rwt3
t2w1lwt3
t2h1uwt3
t2h1dwt3
t2w1r4
t2w1l4
t2h1u4
t2h1d4
t2w1rwt4
t2w1lwt4
t2h1uwt4
t2h1dwt4
t2w1r5
t2w1l5
t2h1u5
t2h1d5
t2w1rwt5
t2w1lwt5
t2h1uwt5
t2h1dwt5
t2w1r6
t2w1l6
t2h1u6
t2h1d6
t2w1rwt6
t2w1lwt6
t2h1uwt6
t2h1dwt6
t2w1r7
t2w1l7
t2h1u7
t2h1d7
t2w1rwt7
t2w1lwt7
t2h1uwt7
t2h1dwt7
t2w1r8
t2w1l8
t2h1u8
t2h1d8
t2w1rwt8
t2w1lwt8
t2h1uwt8
t2h1dwt8
t2w1r9
t2w1l9
t2h1u9
t2h1d9
t2w1rwt9
t2w1lwt9
t2h1uwt9
t2h1dwt9
t2w1r10
t2w1l10
t2h1u10
t2h1d10
t2w1rwt10
t2w1lwt10
t2h1uwt10
t2h1dwt10
w1rwt3
w1lwt3
h1uwt3
h1dwt3
w2rwt3
w2lwt3
h2uwt3
h2dwt3
pawr3
pawl3
pbwr3
pbwl3
pahu3
pahd3
pbhu3
pbhd3
awl3
bwl3
awr3
bwr3
ahu3
bhu3
ahd3
bhd3
awlwt3
bwlwt3
awrwt3
bwrwt3
ahuwt3
bhuwt3
ahdwt3
bhdwt3
pawrwt3
pawlwt3
pbwrwt3
pbwlwt3
pahuwt3
pahdwt3
pbhuwt3
pbhdwt3
a2wlwt3
b2wlwt3
a2wrwt3
b2wrwt3
a2huwt3
b2huwt3
a2hdwt3
b2hdwt3
a2wl3
b2wl3
a2wr3
b2wr3
a2hu3
b2hu3
a2hd3
b2hd3
mru13
mru23
nru13
nru23
mrd13
mrd23
nrd13
nrd23
mlu13
mlu23
nlu13
nlu23
mld13
mld23
nld13
nld23
z0wr3
z0wl3
z0hu3
z0hd3
p2parawr3
p2parawl3
p2parahu3
p2parahd3
p2parawrwt3
p2parawlwt3
p2parahuwt3
p2parahdwt3
riTable3
liTable3
uiTable3
diTable3
roTable3
loTable3
uoTable3
doTable3
w1rwt4
w1lwt4
h1uwt4
h1dwt4
w2rwt4
w2lwt4
h2uwt4
h2dwt4
pawr4
pawl4
pbwr4
pbwl4
pahu4
pahd4
pbhu4
pbhd4
awl4
bwl4
awr4
bwr4
ahu4
bhu4
ahd4
bhd4
awlwt4
bwlwt4
awrwt4
bwrwt4
ahuwt4
bhuwt4
ahdwt4
bhdwt4
pawrwt4
pawlwt4
pbwrwt4
pbwlwt4
pahuwt4
pahdwt4
pbhuwt4
pbhdwt4
a2wlwt4
b2wlwt4
a2wrwt4
b2wrwt4
a2huwt4
b2huwt4
a2hdwt4
b2hdwt4
a2wl4
b2wl4
a2wr4
b2wr4
a2hu4
b2hu4
a2hd4
b2hd4
mru14
mru24
nru14
nru24
mrd14
mrd24
nrd14
nrd24
mlu14
mlu24
nlu14
nlu24
mld14
mld24
nld14
nld24
z0wr4
z0wl4
z0hu4
z0hd4
p2parawr4
p2parawl4
p2parahu4
p2parahd4
p2parawrwt4
p2parawlwt4
p2parahuwt4
p2parahdwt4
riTable4
liTable4
uiTable4
diTable4
roTable4
loTable4
uoTable4
doTable4
w1rwt5
w1lwt5
h1uwt5
h1dwt5
w2rwt5
w2lwt5
h2uwt5
h2dwt5
pawr5
pawl5
pbwr5
pbwl5
pahu5
pahd5
pbhu5
pbhd5
awl5
bwl5
awr5
bwr5
ahu5
bhu5
ahd5
bhd5
awlwt5
bwlwt5
awrwt5
bwrwt5
ahuwt5
bhuwt5
ahdwt5
bhdwt5
pawrwt5
pawlwt5
pbwrwt5
pbwlwt5
pahuwt5
pahdwt5
pbhuwt5
pbhdwt5
a2wlwt5
b2wlwt5
a2wrwt5
b2wrwt5
a2huwt5
b2huwt5
a2hdwt5
b2hdwt5
a2wl5
b2wl5
a2wr5
b2wr5
a2hu5
b2hu5
a2hd5
b2hd5
mru15
mru25
nru15
nru25
mrd15
mrd25
nrd15
nrd25
mlu15
mlu25
nlu15
nlu25
mld15
mld25
nld15
nld25
z0wr5
z0wl5
z0hu5
z0hd5
p2parawr5
p2parawl5
p2parahu5
p2parahd5
p2parawrwt5
p2parawlwt5
p2parahuwt5
p2parahdwt5
riTable5
liTable5
uiTable5
diTable5
roTable5
loTable5
uoTable5
doTable5
w1rwt6
w1lwt6
h1uwt6
h1dwt6
w2rwt6
w2lwt6
h2uwt6
h2dwt6
pawr6
pawl6
pbwr6
pbwl6
pahu6
pahd6
pbhu6
pbhd6
awl6
bwl6
awr6
bwr6
ahu6
bhu6
ahd6
bhd6
awlwt6
bwlwt6
awrwt6
bwrwt6
ahuwt6
bhuwt6
ahdwt6
bhdwt6
pawrwt6
pawlwt6
pbwrwt6
pbwlwt6
pahuwt6
pahdwt6
pbhuwt6
pbhdwt6
a2wlwt6
b2wlwt6
a2wrwt6
b2wrwt6
a2huwt6
b2huwt6
a2hdwt6
b2hdwt6
a2wl6
b2wl6
a2wr6
b2wr6
a2hu6
b2hu6
a2hd6
b2hd6
mru16
mru26
nru16
nru26
mrd16
mrd26
nrd16
nrd26
mlu16
mlu26
nlu16
nlu26
mld16
mld26
nld16
nld26
z0wr6
z0wl6
z0hu6
z0hd6
p2parawr6
p2parawl6
p2parahu6
p2parahd6
p2parawrwt6
p2parawlwt6
p2parahuwt6
p2parahdwt6
riTable6
liTable6
uiTable6
diTable6
roTable6
loTable6
uoTable6
doTable6
w1rwt7
w1lwt7
h1uwt7
h1dwt7
w2rwt7
w2lwt7
h2uwt7
h2dwt7
pawr7
pawl7
pbwr7
pbwl7
pahu7
pahd7
pbhu7
pbhd7
awl7
bwl7
awr7
bwr7
ahu7
bhu7
ahd7
bhd7
awlwt7
bwlwt7
awrwt7
bwrwt7
ahuwt7
bhuwt7
ahdwt7
bhdwt7
pawrwt7
pawlwt7
pbwrwt7
pbwlwt7
pahuwt7
pahdwt7
pbhuwt7
pbhdwt7
a2wlwt7
b2wlwt7
a2wrwt7
b2wrwt7
a2huwt7
b2huwt7
a2hdwt7
b2hdwt7
a2wl7
b2wl7
a2wr7
b2wr7
a2hu7
b2hu7
a2hd7
b2hd7
mru17
mru27
nru17
nru27
mrd17
mrd27
nrd17
nrd27
mlu17
mlu27
nlu17
nlu27
mld17
mld27
nld17
nld27
z0wr7
z0wl7
z0hu7
z0hd7
p2parawr7
p2parawl7
p2parahu7
p2parahd7
p2parawrwt7
p2parawlwt7
p2parahuwt7
p2parahdwt7
riTable7
liTable7
uiTable7
diTable7
roTable7
loTable7
uoTable7
doTable7
w1rwt8
w1lwt8
h1uwt8
h1dwt8
w2rwt8
w2lwt8
h2uwt8
h2dwt8
pawr8
pawl8
pbwr8
pbwl8
pahu8
pahd8
pbhu8
pbhd8
awl8
bwl8
awr8
bwr8
ahu8
bhu8
ahd8
bhd8
awlwt8
bwlwt8
awrwt8
bwrwt8
ahuwt8
bhuwt8
ahdwt8
bhdwt8
pawrwt8
pawlwt8
pbwrwt8
pbwlwt8
pahuwt8
pahdwt8
pbhuwt8
pbhdwt8
a2wlwt8
b2wlwt8
a2wrwt8
b2wrwt8
a2huwt8
b2huwt8
a2hdwt8
b2hdwt8
a2wl8
b2wl8
a2wr8
b2wr8
a2hu8
b2hu8
a2hd8
b2hd8
mru18
mru28
nru18
nru28
mrd18
mrd28
nrd18
nrd28
mlu18
mlu28
nlu18
nlu28
mld18
mld28
nld18
nld28
z0wr8
z0wl8
z0hu8
z0hd8
p2parawr8
p2parawl8
p2parahu8
p2parahd8
p2parawrwt8
p2parawlwt8
p2parahuwt8
p2parahdwt8
riTable8
liTable8
uiTable8
diTable8
roTable8
loTable8
uoTable8
doTable8
w1rwt9
w1lwt9
h1uwt9
h1dwt9
w2rwt9
w2lwt9
h2uwt9
h2dwt9
pawr9
pawl9
pbwr9
pbwl9
pahu9
pahd9
pbhu9
pbhd9
awl9
bwl9
awr9
bwr9
ahu9
bhu9
ahd9
bhd9
awlwt9
bwlwt9
awrwt9
bwrwt9
ahuwt9
bhuwt9
ahdwt9
bhdwt9
pawrwt9
pawlwt9
pbwrwt9
pbwlwt9
pahuwt9
pahdwt9
pbhuwt9
pbhdwt9
a2wlwt9
b2wlwt9
a2wrwt9
b2wrwt9
a2huwt9
b2huwt9
a2hdwt9
b2hdwt9
a2wl9
b2wl9
a2wr9
b2wr9
a2hu9
b2hu9
a2hd9
b2hd9
mru19
mru29
nru19
nru29
mrd19
mrd29
nrd19
nrd29
mlu19
mlu29
nlu19
nlu29
mld19
mld29
nld19
nld29
z0wr9
z0wl9
z0hu9
z0hd9
p2parawr9
p2parawl9
p2parahu9
p2parahd9
p2parawrwt9
p2parawlwt9
p2parahuwt9
p2parahdwt9
riTable9
liTable9
uiTable9
diTable9
roTable9
loTable9
uoTable9
doTable9
w1rwt10
w1lwt10
h1uwt10
h1dwt10
w2rwt10
w2lwt10
h2uwt10
h2dwt10
pawr10
pawl10
pbwr10
pbwl10
pahu10
pahd10
pbhu10
pbhd10
awl10
bwl10
awr10
bwr10
ahu10
bhu10
ahd10
bhd10
awlwt10
bwlwt10
awrwt10
bwrwt10
ahuwt10
bhuwt10
ahdwt10
bhdwt10
pawrwt10
pawlwt10
pbwrwt10
pbwlwt10
pahuwt10
pahdwt10
pbhuwt10
pbhdwt10
a2wlwt10
b2wlwt10
a2wrwt10
b2wrwt10
a2huwt10
b2huwt10
a2hdwt10
b2hdwt10
a2wl10
b2wl10
a2wr10
b2wr10
a2hu10
b2hu10
a2hd10
b2hd10
mru110
mru210
nru110
nru210
mrd110
mrd210
nrd110
nrd210
mlu110
mlu210
nlu110
nlu210
mld110
mld210
nld110
nld210
z0wr10
z0wl10
z0hu10
z0hd10
p2parawr10
p2parawl10
p2parahu10
p2parahd10
p2parawrwt10
p2parawlwt10
p2parahuwt10
p2parahdwt10
riTable10
liTable10
uiTable10
diTable10
roTable10
loTable10
uoTable10
doTable10

• Source code for `Guide_four_side_10_shells.comp`.